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Abstract

Whereas in previous analogue experiments on gravitational spreading and gliding, detachment occurred on a ductile layer, we have used a

relatively new technique of injecting compressed air into sand packs so as to simulate the effects of fluid overpressures in sedimentary strata and to

trigger slope instabilities. In our experiments, the governing equations yield scales for dimensions, stresses and fluid pressure. However, the more

transitory phenomena of production and decrease of overpressure cannot be suitably scaled. By using layers of differing permeability, we are able

to produce sharp detachments in models made of sand alone. The experiments involve gravity spreading or gravity gliding. In gravity spreading,

propagation of the detachment and of extensional deformation depends on the fluid pressure. For medium values of fluid overpressure, normal

faults are closely spaced, numerous and bound rotated blocks. They propagate progressively toward the back of the model. For the highest

pressures, the deformation propagates very fast and faults bound non-rotated blocks, which slide on an efficient basal detachment. Fault dips are

also controlled by fluid pressure and by frictional resistance at the base. To model gravitational gliding required an apparatus with a more complex

system of air injection. We did a series of experiments using injection windows of various lengths and compared the results with predictions from

a quasi-3D analytical model of sliding. In contrast with predictions for an infinite slope, sliding depends on (1) the fluid overpressure on the

detachment, (2) the fluid overpressure in the body of the sliding sheet, and (3) the shape of the detachment surface. In particular, we show that

frictional resistance at the lower edge is a primary control on the dynamics of gliding.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Gravitational gliding of the uppermost layers of sediment

is a common phenomenon on continental margins and in

many deltas (Fig. 1). The resulting thin-skinned deformation

is visible on seismic sections as faults and folds. Some

good examples have been described from the Niger Delta

(Evamy et al., 1978; Damuth, 1994; Cohen and McClay,

1996), the Gulf of Mexico (Worral and Snelson, 1989), the

Brazilian margin (Cobbold and Szatmari, 1991), the Gulf of

Guinea (Mauduit, 1998) and the Amazon Fan (Cobbold

et al., 2004).

For sediments to glide on gentle delta slopes (between 0.5

and 48), the resistance to horizontal shearing at the base must be
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Maine, 72085 Le Mans Cedex 09, France. Fax: 33 (0)243833237.

E-mail address: Regis.Mourgues@univ-lemans.fr (R. Mourgues).
very small (Mandl and Crans, 1981). This will be so, for

example, if there is a basal layer of ductile material, such as salt

or soft sediment. Alternatively, fluid overpressure may carry

part of the weight, so reducing the frictional resistance at the

base. Under these conditions, the detachment may be a thin

shear zone or fault (Brun and Choukroune, 1983). For the last

two decades, thin-skinned gravitational deformation has been

widely studied by sandbox modelling. There is a long history of

using silicone putty to model salt or shale (Vendeville, 1987;

Vendeville and Cobbold, 1987; Cobbold and Szatmari, 1991;

Mauduit et al., 1997a,b; Mauduit, 1998; Maillard et al., 2003;

Brun and Fort, 2004), assuming that these geological materials

are ductile when they deform slowly (Fig. 1). In contrast, the

use of pore fluids in sandbox models is more recent.

Compressed air provides a practical source (Cobbold and

Castro, 1999). Cobbold et al. (2001) were able to verify some

of the theoretical predictions for thrust wedges containing fluid

overpressures. They showed that permeability is important in

controlling the positions of thin-skinned detachments. More

recently, Mourgues and Cobbold (2003) have used the same
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Nomenclature

s Total stress tensor, Pa

s 0 Effective stress tensor, Pa

q Darcy velocity, m sK1

Fw Weight per unit volume, N mK3

Fb Buoyancy force per unit volume, N mK3

Fs Seepage force per unit volume, N mK3

k Intrinsic permeability, m2

t Shear stress, Pa

tf Yield shear stress, Pa

sn Normal stress, Pa

P Fluid pressure, Pa

Pd Fluid pressure on detachment, Pa

Pb Basal fluid pressure, Pa

l Ratio of pore pressure and vertical stress, –

lb l ratio on detachment, –

Dst Variation of total stress, Pa

PPjnh Non-hydrostatic part of the fluid pressure gradient,

Pa mK1

m Coefficient of internal friction, –

ms Coefficient of sliding (sand against wall), –

c Cohesion, Pa

K Ratio of horizontal and vertical effective stress, –

Ks Softening parameter, –

rb Bulk density, kg mK3

rs Solid density, kg mK3

rw Fluid density, kg mK3

f Porosity, –

ab Bulk compressibility, PaK1

b Compressibility of pore fluid, PaK1

bs Compressibility of solid grains, PaK1

a Slope angle, degrees (8)

H Thickness of slide, m

l Width of slide, m

L Length of slide, m
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experimental technique for demonstrating the significance of

seepage forces in tectonics.

In this paper, we further explore the potential of using

compressed air. The focus is on gravity spreading and gliding

in overpressured strata, as a result of slope instability. We start

by discussing the scaling of sandbox models involving pore

fluids. We show that granular materials such as sand are not

adequate for modelling the production or diffusion of
Fig. 1. Detachments involving ductile material (1) or fluid overpressures in purely br

the Angolan margin (after Fort, 2002). Experimental model (1-b) involves a ba

overpressured shale from the Niger delta (line drawing; after Morley and Guerin, 1
overpressure, which are transitory phenomena. On the other

hand, the granular materials are valid for situations where fluid

flow is steady. We briefly discuss how fluid overpressure

decreases the angle of stability of a slope and we describe a

series of experiments on gravity spreading, where the apparatus

provides a uniform basal fluid pressure. Then we introduce a

new apparatus, which allows us (1) to define the shape of an

overpressured window, (2) to provide a non-uniform fluid
ittle sediment (2). Seismic example of growth faults and salt rollers (1-a) is from

sal layer of silicone putty (after Fort, 2002). Sharp detachment (2-c) is in

996). This kind of structure has not been properly modelled so far.



R. Mourgues, P.R. Cobbold / Journal of Structural Geology 28 (2006) 887–901 889
pressure at the base of the model, and (3) to model entire

sliding sheets. Finally, we illustrate some simple experiments

on gravity gliding and compare them with an analytical model

of a sliding sheet. The good agreement between sandbox

results and analytical predictions prepares the way for more

realistic experiments in the future.
2. Scaling of models involving pore fluid

If pore fluids are overpressured, the main difficulty in

modelling geological deformation is that the fluid pressure,

fluid flow and matrix deformation are all coupled (Strayer et

al., 2001). To achieve proper scaling of a deformable saturated

medium, we need to consider the governing equations for the

solid matrix and for the fluid.

2.1. Solid matrix

In terms of Cartesian coordinates, x, the following

governing equations express the macroscopic balance of

effective stresses (Terzaghi, 1923), body forces and fluid

pressure gradients (Dahlen, 1990):

vs0
ij

vxj

Z rbgiK
vP

vxi

(1)

Here, s is the macroscopic effective stress tensor for the solid

framework, P is the macroscopic fluid pressure, rb is the bulk

density of the aggregate, g is the acceleration due to gravity, and

suffixes i and j refer toCartesian tensor or vector components. The

bulk density is (1Kf)rsCfrf, where f is the porosity and rs and

rf are the densities of solid particles and fluid, respectively.

Each parameter in Eq. (1) can be written as the product of a

dimensionless variable (denoted here by a prime) and a

constant reference value (denoted here by the subscript o). Eq.

(1) then becomes:

so

Lorbogo

vs0*
ij

vx*j
Z r*bg*K

Po

Lorbogo

vP*

vx*i
(2)

The ratios, so/Lorbogo and Po/Lorbogo, are also dimensionless.

They may be set to unity, by a suitable choice of reference

values. On applying them to a model and its natural prototype,

we obtain scaling ratios for stress and fluid pressure, in terms of

scaling ratios for density, gravitational acceleration, and

length, L:

gP Z
Pm

Pr

Z
sm

sr
Zgs ZgLgrgg (3)

where

gL Z
Lm

Lr

; gr Z
rbm

rbr
; gg Z

gm

gr

Z 1

Here suffixes m and r refer to variables in model and nature,

respectively. Eq. (3) lays the foundation for scale modelling in

the presence of pore fluids (Cobbold et al., 2001).

To a first approximation, brittle rock and granular materials

fail according to a Coulomb yield envelope, which is a linear
relationship between the shear stress tf and the effective

normal stress s0
n acting on a plane:

tf Z cCms0
n (4)

Here c is the cohesion and m is a dimensionless coefficient of

internal friction. The latter must be the same in model and

nature, whereas the former scales in the same way as stress

(Davy and Cobbold, 1991). If the stress ratio between model

and nature is 10K5 (1 cm being equivalent to 1 km), 100 Pa for

the cohesion in a model will represent a reasonable value of

10 MPa in nature (Byerlee, 1978). In our experiments, we used

Fontainebleau sand. Mourgues and Cobbold (2003) obtained

its yield envelope for a range of effective normal stresses, down

to values as small as 5 Pa. For normal stresses greater than

30 Pa, the failure envelope for sifted sand is linear, the

cohesion being smaller than 40 Pa and the coefficient of

internal friction being close to 1.5. For normal stresses smaller

than 30 Pa, m increases as stress decreases, reaching a

maximum of 2.5. Hence the yield envelope is not linear near

the origin, but curves into it.
2.2. Pore fluid

In the Earth’s crust, pore fluid pressure tends to increase

with depth, as a result of gravity. If the pores are

interconnected, the pressure gradient will be hydrostatic.

This can be taken as a reference state. Overpressures

(or underpressures) can develop if some mechanism

disturbs this reference state. However, abnormal pressures

will tend to dissipate as soon as the generating mechanism

stops and provided that the rocks are permeable. In practice,

therefore, overpressures are likely to be transitory (Neuzil,

1994).

For the generation of fluid overpressure in situ, several

mechanisms have been suggested (Osborne and Swarbrick,

1997; Swarbrick et al., 2002). The overpressure may result

from either (1) a reduction in the pore space, due to

contraction of the solid matrix, or (2) an increase in the

volume of pore fluid. In sedimentary basins and deltas, the

main causes of matrix contraction are likely to be either

vertical compaction during burial or horizontal contraction of

tectonic origin. Amongst the mechanisms producing an

increase in fluid volume are thermal dilation, mineralogical

transformations (for example, smectite to illite) and

hydrocarbon generation.

This last mechanism not only increases the volume of pore

fluid, but also reduces that of the matrix. Probably the most

efficient of all mechanisms is the production of thermogenic

gas, which typically occurs at depths of over 5 km (Barker,

1990).

In a porous elastic material, fluid pressure can vary in space

and time, in sympathy with the mean total stress (Shi and

Wang, 1986; Ge and Garven, 1992; Neuzil, 1995):

k

vf
V2P

���
nh
Cab

dst
dt

Z fbKfbs Cab

� � dP

dt
(5)
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Here Pjnh is the non-hydrostatic part of the pore pressure (in

other words, the overpressure or underpressure) that drives

fluid flow, st is the mean total stress, ab is the bulk

compressibility, bs and b express the compressibility of solid

grains and pore fluid, respectively, and Q is an internal source

of fluid pressure (for example, by gas generation).

Eq. (5) is a generalized equation of diffusion. It expresses

the fact that any fluctuation in fluid pressure has three potential

contributions. One of them is the source term, Q. Another is the

variation in mean stress resulting from compaction:

ab

fbKfbs Cab

dst
dt

The third is the pressure gradient, which derives from

Darcy’s law and governs fluid flow:

k

ðfbKfbs CabÞvf
V2P

���
nh

Typically,bZ4!10K10 PaK1 forwater andbsZ10K11 PaK1

for solid grains. The bulk compressibility, ab, depends mainly on

the solid matrix and ranges from 10K8 to 10K11 PaK1 (Ge and

Garven, 1992; Shi and Wang, 1986), depending on the state of

compaction. As a first approximation, we shall neglect bs in

comparison with a, so that Eq. (5) becomes:

k

vf
V2P

���
nh
Ca

dst
dt

Z fbCa
� � dP

dt
CQ (6)

This equation is valid for elastic deformation. In nature,

however, most deformation is non-elastic and irrecoverable.

For large deformation, the compressibility, as measured

on samples of sediment, is not necessarily representative of

the overall behaviour. Neuzil (1986) has suggested using a

higher compressibility to take this disparity into account.

From Eq. (6), we can distinguish two time scales: one (Tc)

for the build-up of pressure and the other (Td) for its

dissipation.
Table 1

Permeability of model material, for different grain sizes

Material Grain size (10K6 m) Permeability (10K12 m2)

Sand 1 315–400 120G10

Sand 2 200–315 70G5

Sand 3 !200 30G5
2.3. Build-up of overpressure by loading without drainage

If the load increases quickly (due, for example, to a rapid

rate of sedimentation or to tectonic thickening) and the

permeability is small enough, then Tc/Td and diffusion can

be neglected, so that Eq. (6) becomes:

dP

dt
Z

ab

fbCa
� � dst

dt
(7)

Here we have assumed that the source, Q, is also negligible.

For young and readily compactable sediment, ab[b, so that

Eq. (7) integrates to:

DP ZDst (8)

The scaling of this equation does not imply any strong

relationship between values of compressibility for matrix and

fluid. Model materials must simply satisfy:

ab[b (9)
Young’s modulus for loose and dense sands ranges

between 10 and 50 MPa. Thus, the compressibility ab is

around 10K7 PaK1 or less, if we assume irreversible

deformation. Water as an experimental pore fluid satisfies

condition (9), because bZ4!10K10 PaK1. On the other hand,

condition (9) does not hold for air, because bZ10K5 PaK1, so

that, from Eq. (7), the change in fluid pressure will be no more

than 1% of the change in stress, Dst.
2.4. Dissipation of overpressure

Now consider that st is invariant. Eq. (6) becomes:

vP

vt
Z

k

ðab CfbÞvf
V2P nhj (10)

We also assume that Q vanishes and that ab[b.

Eq. (10) governs the dissipation of overpressure by a

diffusion mechanism (Darcy flow). The reference time for this

diffusion is:

to Z
vocoL

2
o

ko
(11)

Here, coZ(aboCfbo). The reference time increases with fluid

viscosity, hydraulic resistivity (1/ko) and compressibility. The

time ratio is therefore:

gt Zgvg
2
Lgcg

K1
k (12)

In their experiments, Cobbold et al. (2001) applied Darcy’s

law:

qi Z
k

vf

vP

vxi

���
nh

(13)

The time ratio deduced from this equation is slightly

different:

gt Zgvg
2
Lg

K1
s gK1

k (14)

If the elastic properties of the material are properly scaled,

we must have gsZgK1
c (Hubbert, 1937), so that Eqs. (12) and

(14) become identical. In contrast, if the elastic properties of a

model material are not properly scaled, as so often happens in

practice (Ramberg, 1967), Eq. (12) may be preferable.

In the previous paragraph, we have demonstrated that water

makes a good pore fluid for modelling the generation of

overpressure by compaction. By assuming reference values of

kmZ5!10K11 m2 (Table 1), krZ10K16 m2, abrZ10K8 PaK1,

amZ10K7 PaK1 and gLZ10K5, the time ratio is 2!10K15.

This means that 1 s in an experiment is equivalent to 15 Ma in

nature! The reference time for diffusion in a sand model, 3 cm

thick, is close to 2 ms if the fluid is water and 1.5 ms if it is air.
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This means that, although we can model the generation of fluid

overpressures by a compaction mechanism when the material

is very compressible, dissipation is quasi-instantaneous. Thus,

properly scaled analogue modelling of such transitory

phenomena, using air or water as a pore fluid and sand as a

brittle material, would seem to be impossible. In addition, it

may be difficult to model any changes in permeability during

faulting.

In conclusion, our sand models will be scaled for the

balance of forces, stresses and fluid pressures, but not for time.

The fluid pressure distribution in the sand will be controlled

only by the boundary conditions and transitory overpressures

will be negligible. Water and air have different viscosities, but

they can equally well be used. Nevertheless, for practical

reasons, it may be easier to use air.
3. Stability of an infinitely long submarine slope with

abnormal fluid pressures

By carrying part of the stress, a fluid overpressure reduces

the frictional resistance within sloping sediments and can

trigger gravitational gliding. To estimate slope stability, it is

usually enough to consider variations in one dimension

(Terzaghi, 1950; Hubbert and Rubey, 1959; Lambe and

Whitman, 1969; Crans et al., 1980; Mandl and Crans, 1981;

Mello and Pratson, 1999). The assumption is that the slope is

infinitely long, so that longitudinal stress gradients are

negligible. The gradient of fluid overpressure and the direction

of fluid flow are assumed to be perpendicular to the slope.

Mandl and Crans (1981) justified this approximation on the

grounds that compaction is invariant along the slope and that

the principal axes of the permeability tensor (which is

potentially anisotropic) are approximately parallel and per-

pendicular to the free surface.

In terms of coordinates x and z, parallel and perpendicular to

the slope, Eq. (1) becomes:

vs0
xz

vz
Z rbgsinaK

vP

vx
(15)

vs0
zz

vz
Z rbgcosaK

vP

vz
(16)
Fig. 2. One-dimensional analysis of slope stability. Above depth Za, pore fluid is i

confining layer of small permeability. Even further down, pore fluid maintains nearly

stress tf at depth Zd (b), triggering detachment (c).
If the sediment has a Mohr–Coulomb yield envelope,

gliding will occur when the shear stress on a plane parallel to

the slope reaches the yield stress:

s0
xz Z tf Z cCm s0

zzKP
� �

(17)

In stratified sediment, the pressure gradient varies from one

layer to another, in response to changes in permeability

(Fig. 2). The yield stress is reached at a depth Zd (Fig. 2), which

is determined by the intensity of overpressure. At this depth, a

detachment appears and the sediment begins to slide.

4. Experiments on gravity spreading

In a first series of experiments, we have used the apparatus

of Cobbold et al. (2001) to model the development of normal

faults and the propagation of a detachment during gravity

spreading of a sedimentary sequence (Fig. 3). Each model was

housed in a bottomless rectangular plastic box (30 cm long and

20 cm wide). The box rested on a reservoir for compressed air,

which provided a uniform fluid pressure. A sieve at the base of

the box allowed air to percolate into the overlying sand.

Models were constructed in successive layers in order to create

non-linear profiles of pore pressure, as in nature (Fig. 2). The

bottom layer, 1 cm thick, was of coarse sand (315–400 mm).

The next layer, 1 cm thick, was of fine sand (125–200 mm) and

had a smaller permeability (Table 1). The third and final layer,

3 cm thick, was again of coarse sand. For such a multilayered

model, pressure profiles are necessarily kink-like, if fluid

migrates upwards (Fig. 3).

At the beginning of each experiment, the apparatus was

tilted a few degrees. The end wall of the box was then

withdrawn at a steady velocity of 10 cm/h. This allowed the

model, except for its basal layer of coarse sand, to spread under

its own weight. The displacement of the end wall was limited to

5 cm, except in experiments 7d and 11b, where it was stopped

at 3.5 and 3.2 cm, respectively, because blowouts occurred at

the upper end of the model (Fig. 4d and f).

To understand how the detachment was operating, we

slightly improved on the experimental technique, by introdu-

cing into some experiments (7c and 11b) a series of coloured

internal markers (Fig. 4). Transverse lines of coloured sand

were built into (1) the basal coarse-grained layer and (2) the
n hydrostatic state (a). Beneath it, rapid increase in pore pressure results from

lithostatic pressure. For an infinite slope, shear stress sxz becomes equal to yield



Fig. 3. (A) Apparatus for experiments on gravitational spreading. Model rests on sieve, which occupies window in pressure chamber. Compressed air enters pressure

chamber through feeder tube and percolates through sieve and overlying model. Pressure is measured with U-tube manometer. Withdrawal of sliding piston allows

model to spread under its own weight. (B) Details of multilayered model. Sand 1 and Sand 3 are described in Table 1. (C) Theoretical profiles of pressure in

multilayered model. Fluid pressure approaches lithostatic values at base of fine sand (Sand 3).
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overlying fine-grained layer. The markers were in pairs,

vertically aligned. As a result of deformation, they became

offset. We conducted two series of spreading experiments

(series A and series B), for various values of basal fluid

pressure. At the end of each experiment, we rendered the

models cohesive, by wetting them, and then we sectioned them

(Fig. 4).
4.1. Series A

The apparatus was tilted through 78 and experiments were

done for basal fluid pressures (Pb) ranging from 0 to 620 Pa.

For little or no fluid flow (Pb!300 Pa), the models remained

stable and no internal structures appeared. Instead, a natural

talus formed in the space left behind by the moving end wall.

The larger was the fluid pressure, the smaller was the slope of

the talus. At intermediate values of fluid pressure, normal faults

developed. For moderate pressures (PbZ300 and 500; Fig. 4a

and b), normal faults were numerous and closely spaced.

Between them were rotated blocks. Deformation propagated

from the sliding wall toward the back of the box. The rate of

propagation was faster for higher pressures. Thus, at the end of

experiment 7c, deformation had reached the back of the box

(Fig. 4c). In this experiment, the final offsets of the coloured

markers into the basal coarse-grained layer and the overlying

fine-grained layer decreased systematically towards the back of

the box, confirming that the overlying material had slid as a

series of small blocks, separated by normal faults (Fig. 4c). At

the highest values of fluid overpressure (experiment 7d) only

three faults formed, bounding non-rotated rigid blocks

(Fig. 4d). In the first stages of this experiment, faults formed

at the back of the box. In all experiments, normal faults rooted

into a detachment, beneath the layer of small permeability. The

underlying coarse-grained layer never deformed.
For these experiments, we have measured the dip of the

youngest normal fault and plotted it against the fluid pressure at

the base of the model (Fig. 6). For values of Pb between 400

and 550 Pa, faults flatten (from 57 to 508) with increasing fluid

pressure. For the highest pore fluid pressure (620 Pa;

experiment 7d), the fault dip is much larger (close to 628).

4.2. Series B

In these experiments, the apparatus was tilted through 118.

The results were basically similar to those of series A. For little

fluid flow,models were stable. In experiment 11a (PbZ450 Pa),

faults were closely spaced, blocks rotated and deformation

propagated towards the back (Fig. 4e). At higher fluid pressure

(PbZ500 Pa; experiment 11b), faults bounded non-rotated and

rigid blocks (Fig. 4f). Coloured markers 5–7 acquired identical

offsets of 2 cm, whereas markers 3 and 4 acquired smaller

offsets (Fig. 4f). This result proves that the detachment was

efficient and that the overlying sand slid essentially as two rigid

blocks, separated by an extensional normal fault. The

detachment appeared in the initial stages of the experiment

and deformation reached the back of the box at the same time.

There were, however, some differences between series A and

series B. In series A, all faults had the same vergence, whereas in

series B, a few antithetic faults formed. In contrast, Vendeville

(1987) and McClay and Ellis (1987) reported that, for sand

packs stretching above a rubber sheet, antithetic faults were

more numerous when slopes were gentler.

4.3. Discussion

4.3.1. Nature of the detachment

In the experiments of series A and series B, the style of

deformation depended on the fluid pressure. For high fluid



Fig. 4. Experiments on gravitational spreading. Photographs show final stages of deformation for longitudinal sections. Line drawings show interpretations. Models

were built in three layers (made of Sand 1 or Sand 3). Models a–d (Series A) were tilted through 78, models e and f (Series B) through 118. Fluid pressure P was

measured at base of model and non-dimensional fluid pressure, lZP/(rgz cos a), was calculated for base of fine sand (Sand 3). In experiments 7c and 11b, markers

(black or white diamonds in photographs) were introduced near base of sand. Before deformation, pairs of markers were vertically aligned. After deformation,

markers (open circles, in interpretations) became offset (so that linking straight lines are now oblique).
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pressure (experiments 7d and 11b), detachment was efficient

and appeared in the initial stages of deformation. The overlying

sand slid essentially as a series of rigid blocks. For lower fluid

pressure (experiments 7c and 11a), deformation propagated

from the sliding wall towards the back of the box and the

overlying material slid as a series of smaller rotated blocks,

separated by normal faults.

To understand how the detachment was operating, we can

assume that the slope was infinitely long and estimate the shear

stress s0
xz at the base of the fine sand in experiments 7c and 7d.

Under these conditions, by integration of Eq. (15):

s0
xz Z rbgzdsinaKPd (18)
To a good approximation, the yield stress, tf, on a plane

parallel to the slope is given by the Mohr–Coulomb envelope

(Eq. (4)). Because the sand was poured and not sifted, we take a

smaller coefficient of internal friction (mZ1) than that

determined by Mourgues and Cobbold (2003). We also assume

that the cohesion is negligible. Under these conditions, for

experiments 7c and 7d, the basal shear stress is smaller than the

yield stress (Fig. 5). We can define a safety parameter,

FSafZs0
xz=tf , at the base of the fine sand. For experiment 7c,

FSafZ0.5, but for experiment 7d, FSafZ0.85. We infer that the

second model was closer to failure, so that a detachment

formed more easily. More realistically, the withdrawal of the

end wall should have decreased the longitudinal stress s0
xx and



Fig. 5. Theoretical profiles of shear stress for two experiments (7c and 7d;

Fig. 4). Shear stress s0
xz is for infinite slope and yield stress tf is for plane

parallel to slope. Safety parameter FSaf is defined as (s0
xz=tf ).

Fig. 6. Measured dip of normal faults versus basal fluid pressure, Pb, for models

tilted through 78.

Fig. 7. Reorientation of principal stresses and conjugate extensional faults as func

extensional faults formabove velocity discontinuity between sliding sieves (b). Assum

faults, angle between s1 and z must increase with increasing ratio, l. Theoretical cu
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therefore its gradient vs0
xx=vx. From the equations of stress

equilibrium (1), any such decrease must have been compen-

sated by an increase in the vertical gradient of shear stress,

vs0
xz=vz. In experiments 7d and 11b, this change should have

been enough for the basal shear stress to reach the yield stress,

creating a detachment throughout the model.
4.3.2. Dips of normal faults

In the experiments of series A, we observed that the dip of

the youngest faults depended on the fluid pressure (Fig. 6). The

same remark can be made for the experiments of series B. For

values of Pb between 400 and 550 Pa, we attribute the

flattening of the faults to seepage forces (Mourgues and

Cobbold, 2003). The equations of state for effective stress (1)

can be written:

vs0
ij

vxj

Z ð1KfÞðrsKrwÞgiK
vP

vxi

���
nh

(19)

Here f is porosity, rs and rw are solid and water density,

respectively, and the composite subscript nh refers to the non-

hydrostatic part of the fluid pressure gradient. According to

these equations, the forces acting on each element of solid

matrix are (1) its weight FwZ(1Kf)rsg, (2) a buoyancy force,
FaZK(1Kf)rwg and (3) a seepage force, FsZKVPjnh.

Although the first two forces act vertically, the third one may

act in another orientation, so modifying the principal values

and orientations of effective stresses. In our experiments, the

seepage force was perpendicular to the slope. If conjugate

faults develop above a velocity discontinuity, Mourgues and

Cobbold (2003) have shown that principal stresses and faults

flatten with depth, as a function of the increasing overpressure

gradient (Fig. 7). For the highest fluid pressure (620 Pa), we
tion of overpressure gradient (after Mourgues and Cobbold, 2003). Conjugate

ing thatmaximal compressive stresss1 bisects dihedral angle between conjugate

rves are for infinite slope (c). Reorientation is due to seepage force Fs (a).



Fig. 8. Mohr diagram illustrating how a decrease in shearing resistance on a

detachment causes normal faults to become steeper.
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attribute the much larger fault dip to a decrease in shear stress

on the detachment, as a result of softening during ongoing

sliding. Such an effect has been observed in shear tests (Mandl

et al., 1977). Assuming that the decrease is passed on into the

upper part of the model and that s0
zz remains constant, we

predict, from a Mohr circle for stresses at yield, that normal

faults should be steeper (Fig. 8).
5. Experiments on gravity gliding

5.1. New apparatus with fluid injectors

At the scale of a continental slope or a delta, gravitational

instability may result in a large sliding sheet. At its leading

edge, there may be a belt of compressional deformation (fold-

and-thrust belt).

It would appear that to model a sliding sheet of reasonable

thickness requires a larger apparatus than the one described

previously (20 cm by 30 cm). Moreover, in the previous

experiments 7d and 11b, the displacement of the end wall was
Fig. 9. New experimental apparatus. F
stopped before the end of the experiment, because blowouts

occurred at the upper end of the model (Fig. 4d and f). These

devastating explosions were due to a lack of overburden in the

extensional part. To avoid such unstable explosions in

experiments with high fluid pressures, we needed to change

the basal boundary conditions on pressure (constant pressure).

So we constructed new apparatus, which allows us (1) to house

larger models, (2) to vary the size and shape of the area of

injection, (3) to control the fluid pressure at all points under the

model and (4) to avoid devastating explosions.

As before, the new apparatus has a reservoir at uniform

pressure (Fig. 9). This reservoir receives compressed air

through a basal system of perforated plates, which diffuses the

flow. From the reservoir, air flows through a first sieve and into

a series of rectangular tubes (injectors), 5 cm wide. The model

itself rests on a second sieve, immediately above the injectors.

There are two ways of using the injectors (Fig. 10):

1. Each tube contains a different preset thickness of sand

(Fig. 10a). The pressure in each tube depends on the

thickness of sand within it and also on the thickness and

permeability of overlying parts of the model. By selecting

the thickness of sand in each tube, it is possible to

approach a desired distribution of fluid pressure beneath

the model, while the pressure in the reservoir remains

constant.

2. Each tube is full of sand to the maximum height (25 cm).

The tubes then act as buffers, regulating the flow of air

between reservoir and model. Where the model is thin,

the fluid pressure at the base is low; where the model is

thick, the pressure is high (Fig. 10b). In other words, the

ratio between pore pressure and overburden pressure is

nearly constant. As a result of such buffering, explosions

are less catastrophic or do not occur at all. This is the

method that we have selected for the experiments that are

described below.
or detailed description, see text.



Fig. 10. Two methods of using injectors. In Method 1 (a), each tube contains different preset thicknesses of sand. Resulting pressure, Pb, at base of model varies

horizontally. In Method 2 (b), all tubes are full of sand. They act as buffers, regulating flow of air between reservoir and model. Fluid pressure beneath model varies

horizontally, in such a way that ratio l of pore pressure and overburden stress is nearly uniform, from one vertical profile to another.
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An additional advantage of the new apparatus is that we

may define a basal window of any required size or shape,

simply by blocking the outlying tubes.

5.2. Fluidisation of fine sand at high fluid pressure

To test the new apparatus, we did an experiment at high

fluid pressure. The aim was to trigger gravity gliding on a

gentle slope. The injection window was 40 cm long by 25 cm

wide (Fig. 11). On each side of the window and at its lower

edge were walls of glass, which reduced the sliding friction.

The internal structure of the model was similar to those
Fig. 11. Four stages in the progressive development of surface structures during gravi

arrows) occurred when fluid pressure reached critical value. It resulted in rifts at

happened using the previous apparatus, no devastating explosions occurred in rifts.

from the intermediate layer, and spread out on the surface.
described previously: 1 cm of coarse sand for the lowermost

layer, 1 cm of fine sand for the intermediate one and 1.5 cm of

coarse sand for the uppermost layer. Once the model was in

place, we tilted the apparatus through 58 and increased the fluid

pressure in the reservoir. At an estimated basal pressure of

450 Pa, the model started to slide. However, as a result of

frictional stick-slip, the sliding soon stopped. We therefore

increased the fluid pressure to 470 Pa and this produced further

sliding. Rifts appeared near the trailing edge of the slide. At

this stage, small bubbles reached the surface in the rifts,

creating pockmarks, and fine sand from the intermediate layer

spread out like a fluid on the free surface of the model.
tational gliding. Model and new apparatus were tilted through 58. Gliding (black

trailing edge of gliding sheet and thrusts at leading edge. In contrast to what

Instead, small bubbles reached the surface and sheet of fluidised sand, coming
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In contrast to what happened in previous experiments on

gravity spreading, the fluidisation was stable and did not

degenerate into devastating explosions.

5.3. Length of detachment and dynamics of sliding

To test the dynamics of gliding and to calibrate

future experiments, we did a series of experiments using

injection windows of various lengths. The configurations of

the models were similar to those described in the previous

section. The sliding mass was 2.5 cm thick. The injection

windows were 20, 30, 50 or 70 cm long. The window was

20 cm from the lower endwall. We increased the pressure in

the reservoir until the pressure at the base of the

model reached 400 Pa. Then we carefully and progressively
Fig. 12. Four experiments on gravitational gliding in the new apparatus. Length (L

upper surface show structural development, for increasing angles of slope (a). Thru

displacement history of marker (star), see Fig. 13.
tilted the apparatus, to a maximal slope of 188,

using a forklift truck and avoiding tremors. We took a

photograph of the upper surface for every 0.28 of increasing

slope.

In all experiments, an extensional domain appeared at the

upper edge of the injection window (Fig. 12). In experiments

Gl20 and Gl30, a single fore-thrust developed at the lower edge

of the window. In experiments Gl50 and Gl70, three and four

pop-ups appeared, bounded by fore-thrusts and back-thrusts.

The first fore-thrust appeared at the lower edge of the window

and the following ones stepped back, reducing the length of the

rigidly gliding mass, as the slope increased. For each

experiment, we plotted the displacement of a selected surface

marker (star; Fig. 12) versus the angle of slope, obtaining the

following results (Fig. 13a):
) of injection window varied, from one experiment to another. Photographs of

sts (traces lined by black triangles) formed sequentially, migrating upslope. For



Fig. 13. (a) Displacement of a marker at the back of a sliding sheet versus angle

of slope, for different lengths of injection window. For photographs of

experiments and position of marker (star), see Fig. 12. (b) Comparison of

experimental critical slope and analytical results.

Fig. 14. Configuration of analytical model (Appendix A).
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1. The shorter was the injection window (and hence the slide),

the steeper was the critical slope required for gliding to

start. For models GL70 and GL50, the critical slope was 11

or 128, whereas for models GL30 and GL20, it was more

like 14 or 158.

2. Displacement accumulated in steps.

3. The magnitude of the first step was proportional to the

length of the slide. For model GL70, the first step was 1 cm

long. This was enough to develop a fore-thrust at the

leading edge (Fig. 12d). For model GL50, the first step was

more like 0.5 cm and no thrust fault developed. For models

GL20 and GL30, the markers moved progressively and

extensional structures appeared at the upper edge of the

injection window; but true sliding did not occur until the

slope had reached about 158 (the critical slope).

4. Each step, or sudden increase in displacement, correlated

with the development of a fore-thrust or pop-up. During the

intervening periods of stability, no structures were

developing.

5. In our experiments, compressional failure occurred within

the injection window, but not outside it. As a result,
successive thrusting could only propagate upslope and the

length of the rigidly gliding sheet necessarily decreased.

However, it never became shorter than 20 cm. By then, the

slope was about 158. At later stages, all sheets appeared to

behave in much the same way. Steps were as large as 2 cm

and they alternated with periods of stability, during which

the slope increased by as much as 28.
5.4. Discussion
5.4.1. Analytical model of gravity gliding

When a detachment appears in sloping sediments, part of the

weight is taken off the base and thrown against the toe of the

slope. In terms of stress gradients, (sxz/(z diminishes and (sxx/(x

increases (Eq. (1)). If the slope is long enough, the increase in

sxx leads to failure, by development of thrust faults at the toe of

the slope. For a given angle of slope, Mandl (1988, p. 212)

determined the maximal length of an infinitely wide sheet, by

assuming that the stress gradient (sxx/(x results from a decrease

in sliding resistance on the basal detachment. Alternatively, for

a given length of slide, the slope must be wide enough for the

unbalanced weight to overcome the resistance at the toe,

creating thrust faults. In a slide of finite width, the stress

gradient (sxx/(x also depends on the frictional resistance at the

lateral edges of the slide, that is to say on its width, and the

resistance at the toe is controlled by the presence of fluid

overpressure in the sliding sheet.

To quantify these parameters and to explain the results of

our experiments on gravity gliding, we have developed a quasi-

3D analytical model of a sliding sheet with lateral friction

(Fig. 14 and Appendix A). It is based on the following

assumptions. (1) The sliding sheet is bounded by a normal fault

at the trailing edge and by a thrust fault at the leading edge. (2)

The sheet slides on a basal detachment (at a depth H) that is

parallel to its upper surface. (3) There is lateral friction, but s0
xy

and s0
xx are constant in the y direction. (4) At yield, effective

stresses satisfy a Coulomb criterion. (5) Fluid pressure on the

detachment (lb) is different from that in the body of the sheet

(l). (6) Gliding occurs when the yield stress is reached at the

leading edge.

We have plotted some solutions of the analytical model

(Fig. 15) to show how the critical slope depends on (1) the

length of the slide, (2) lateral friction and the width of the sheet,

and (3) fluid pressure. For a sheet longer than 1 m (L/HO30),

the critical slope is only a few degrees more than for an

infinitely long model (Fig. 15a and b). For a shorter sheet, the

resistance to sliding is significant. It becomes a first-order



Fig. 15. Results of analytical model (Appendix A). (a) Critical slope for sliding, as function of length of sliding sheet (L), for various values of basal fluid pressure, lb.

(b) The same, but for internal fluid pressure, l. (c) and (d) Effect of lateral friction.
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parameter for sheets shorter than 60 cm (L/H!20). Lateral

friction also contributes to the sliding resistance (Fig. 15c and

d). The slope required to trigger a slide increases as its width

diminishes. For wide sliding sheets (L/HO20), lateral friction

is negligible.

The final parameter that controls the resistance to sliding is

the strength of the sheet. This depends on the material, but also

on the fluid overpressure. We distinguish between pressure at

the base of the sheet and pressure within it. For both factors,

overpressure reduces the critical slope for sliding, but for

different reasons. For long sheets, the basal pressure is more

important (Fig. 15a), because it reduces the resistance to

sliding. For short sheets, the internal pressure is more important

(Fig. 15b), because it decreases the resistance of thrust faults at

the leading edge.
5.4.2. Analysis of experimental results

The first result of the experiments on gliding was that the

shorter was the injection window, the steeper was the critical

slope required for gliding to start. This seems to be in

agreement with theory. Fig. 13b shows that our analytical

model provides good predictions of this experimental result.

The second result was that the magnitude of the first step was

proportional to the length of the slide. For models with a long

detachment (model GL70), the first step was 1 cm long and

went with the development of a fore-thrust at the leading edge.

For the smallest models (GL20 and GL30), the sand moved

progressively before true sliding occurred. In this case, we

attribute the first displacements to longitudinal compaction

within the sliding sheet, which otherwise remained stable,

because of resistance at the leading edge. Nevertheless, the
basal detachment must have been already active. Indeed, for

models GL20 and GL30, the observed critical slopes fit the

curves for lower basal friction (that is, a coefficient of softening

ks!1; see Appendix A); whereas, for models GL50 and GL70,

the observed critical slopes fit the curves for higher basal

friction (Fig. 13b). We infer that detachment was active before

the critical slope was attained and that this preliminary

activation resulted in softening on the detachment.

Finally, the step-like displacement curves (Fig. 13) are partly

due to the sequential nature of the thrusting, in response to

fluctuations in the longitudinal stress. Nieuwland et al. (2000),

using sensitive strain gauges, havemeasured such fluctuations, in

experiments on thrusting in sand packs. As soon as one thrust has

formed, the resistance to slip on it decreases, leading to a periodof

rapid slip. However, slip on that thrust results in local thickening

of themodel,which in turn causes an increase in resistance to slip.

A period of stability then ensues, during which the longitudinal

stress builds up again, to the failure limit. At that point, another

thrust forms and the process repeats. Although a similar process

should occur in models that detach on a ductile layer, we would

not predict for them such sudden increases in displacement, but

rather more gentle increases. Notice also that in our experiments,

the sudden increases in displacement may have meant that

significant inertial forces were involved. If so, Eq. (1) needs

additional terms.
6. Conclusions

We have used a relatively new technique (injection of

compressed air into sand packs; Cobbold et al., 2001) to model

the triggering of gravitational instabilities by fluid



Fig. A1. Mohr circles for states of stress at compressional leading edge and

extensional trailing edge of gliding sheet, according to analytical model. For

further explanation, see text.
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overpressure. Basal detachments take the appearance of thin

flat shear bands, in contrast to what happens in experiments

where silicone putty provides the basal weakness. In

experiments on gravity spreading, fluid overpressure facilitated

detachment and extensional deformation. At moderate values

of fluid overpressures, normal faults propagated upslope, from

the leading edge to the trailing edge of the sliding sheet.

Numerous closely spaced normal faults formed between quasi-

rigid blocks that tilted. At the highest overpressures, the

deformation propagated very fast and blocks slid without

tilting on an efficient basal detachment. The angle of fault dip

was a function of fluid pressure and of frictional resistance at

the base. To model gravitational gliding, we have built a new

apparatus with injectors, which allows us to change the shape

of the overpressured window and which avoids devastating

explosions. We have carried out a series of experiments using

injection windows of various lengths. In models shorter than

60 cm, frictional resistance at the leading edge controlled the

dynamics of gliding and the critical slope that was necessary to

trigger the slide. Gliding occurred in steps, during which

sudden increases in displacement alternated with periods of

stability, due to the sequential nature of thrusting at the leading

edge. The experimental results agree with analytical

predictions.

These experiments represent a first stage in the analogue

modelling of gravitational instabilities due to overpressures on

delta slopes and passive margins. They pave the way for more

realistic models of tectonics involving non-viscous detach-

ments. In a future article, we aim to model more realistic

geometries of delta slopes, as well as spatial variations of

overpressures and sedimentation. Nevertheless, readers should

be aware of one major limitation of the technique: transitory

phenomena (overpressure build-up or dissipation) are not

scaled but imposed by the experimenter. Also, it may be

difficult to model any change in permeability during faulting.
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Appendix A. Analytical model of a sliding sheet in three

dimensions

We consider a sliding sheet in three dimensions (Fig. 14). The

sheet abuts a normal fault at its trailing edge and a thrust fault at its

leading edge.At a depthH, the sheet slides on a basal detachment,

which is parallel to the upper surface of slope a. We consider

lateral friction but we assume that s0
xy and s

0
xx are constant in the

y direction. For an elementary volume dV of thickness dz, length

dx and width l (width of the slide), at depth H/2, we write the

balance of forces, making four further assumptions.

1. For lateral friction, we assume a Coulomb criterion, where ms
is the coefficient of sidewall friction.

2. Following the silo model (Jansen, 1895; Mourgues and

Cobbold, 2003), we assume that the vertical stress s0
v

automatically results in a proportional horizontal stress s0
h:

s0
h ZKs0

v (A1)

This assumption is valid for granular or elastic media. In

granular materials, 0.5 is a suitable value for K (Lambe and

Whitman, 1969), so that:

s0
yy ZKðrgz=cosaKPÞ (A2)

3. For basal friction on the detachment, we also assume a

Coulomb criterion and we introduce the parameter ks that

represents softening on the shear zone. At depth H:

s0
xz Z ksms

0
zz (A3)

At yield, ksZ1 and after activation of the detachment ks
diminishes.

4. We assume a linear variation of s0
xz with depth between

surface and detachment.

We now write the balance of forces across the volume dV in

the x direction, using Eqs. (A1)–(A3):

ds0
xxdzlC2msK

� rgH

2cosa
KP zZH=2

�
dxdz

���

CksmðrgcosaKP
zZH

HÞdxdzl Z rgdxdzlsina

���� (A4)

On simplifying, we obtain:

ds0
xx ZrgdxsinaK2msK

rgH

2cosa
KP zZH=2

�� � dx

l

�

Kksm rgcosaKP
zZH

H

��� �
dx ðA5)

�

At the trailing and leading edges of the sheet, on normal and

thrust faults, we assume that stresses are at yield. At a depth H/2,

we estimate s0
zz and s0

xz to be:

s0
zz Z rgðH=2ÞcosaKP zZH=2

��
s0

xz Z ksmðH=2Þ rgcosaKP zZH =H
�� ��

From these values, we determine s0
xx at yield in the

extensional and compressional parts of the sheet and we deduce

the total variation of s0
xx (Ds

0
xx) in the sliding sheet (Fig. A1),
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between points A and B (Fig. 14). Then, from Eq. (A5), we

obtain the length of the sheet L.
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